September 1999 Revised May 2003

NC7SZ19 TinyLogic® UHS 1-of-2 Decoder/Demultiplexer

General Description

FAIRCHILD

SEMICONDUCTOR

The NC7SZ19 is a 1-of-2 decoder with a common output enable. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 5.5V independent of V_{CC} operating range.

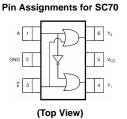
Features

- Space saving SC70 6-lead surface mount package
- Ultra small MicroPak[™] leadless package
- Ultra High Speed: t_{PD} 2.7 ns Typ into 50 pF at 5V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	· · · · · · · · · · · · · · · · · · ·		Package Description	Supplied As		
NC7SZ19P6X	MAA06A	Z19	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel		
NC7SZ19L6X	MAC06A	B4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel		

Pin Descriptions

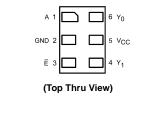

Pin Names	Description
Ē	Decoder Output Enable/ Demultiplexer Data
А	Decoder Address/Demultiplexer Select
Y ₀ , Y ₁	Outputs

Function Table

out	Output				
A E		$\mathbf{Y}_1 = \overline{\mathbf{A}} + \overline{\mathbf{E}}$			
L	L	Н			
L	н	L			
Н	н	Н			
	Dut E L L H				

L = LOW Logic Level X = Don't Care

Connection Diagrams



Pin One Orientation Diagram

AAA = Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

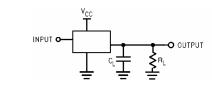
Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@ $V_{IN} \le -0.5V$	–50 mA
DC Output Diode Current (I _{OK})	
@ $V_{IN} \le -0.5V$	–50 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} or Ground Current (I_{CC}/I_{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^\circ C$ to $+150^\circ C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions

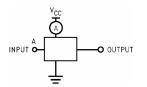
Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Supply voltage Operating (VCC)	1.05 % 10 5.5 %
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V_{CC} @ 1.8V \pm 0.15V, 2.5V \pm 0.2V	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	350°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

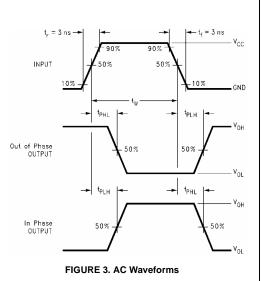

DC Electrical Characteristics

Symbol	Parameter	V _{CC}		T _A = +25°	C	$T_A=-40^\circ C$ to $+85^\circ C$		Units	Conditions	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	0	nations
V _{IH}	HIGH Level	1.65	0.75 V _{CC}			0.75 V _{CC}		V		
	Input Voltage	2.3 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level	1.65			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level	1.65	1.55	1.65		1.55				
	Output Voltage	2.3	2.2	2.3		2.2				I _{OH} = -100 μA
		3.0	2.9	3.0		2.9				1 _{OH} = -100 μA
		4.5	4.4	4.5		4.4			$V_{IN} = V_{IH}$	
		1.65	1.29	1.52		1.29		V	or V _{IL}	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	3.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level	1.65		0.0	0.10		0.10			
	Output Voltage	2.3		0.0	0.10		0.10			I _{OL} = 100 μA
		3.0		0.0	0.10		0.10			$I_{OL} = 100 \mu A$
		4.5		0.0	0.10		0.10		$V_{IN}=V_{IL}$	
		1.65		0.08	0.24		0.24	V	or V _{IH}	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			I _{OL} = 24 mA
		4.5		0.22	0.55		0.55			I _{OL} = 32 mA
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1	μA	$V_{IN} = 5.5V,$	GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	$V_{\rm IN}$ or $V_{\rm OU}$	_T = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1		10	μΑ	V _{IN} = 5.5V,	GND

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH}	Propagation Delay	1.8 ± 0.15	2.5	5.9	10.5	2.5	11.0		1	
t _{PHL} A or E to Output	A or E to Output	2.5 ± 0.2	1.2	3.5	6.0	1.2	6.4	ns C _L R _L	$C_L = 15 \text{ pF},$	Figures 1, 3
		3.3 ± 0.3	0.8	2.7	4.1	0.8	4.5		$R_L = 1 \ M\Omega$	
		5.0 ± 0.5	0.5	2.1	3.2	0.5	3.5			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.2	3.2	5.1	1.2	5.4	ns	$C_{L} = 50 \text{ pF},$	Figures 1, 3
t _{PHL}	A or E to Output	5.0 ± 0.5	0.8	2.7	4.0	0.8	4.3	115	$R_L = 500\Omega$	
CIN	Input Capacitance	0		2.3				pF		
C _{PD}	Power Dissipation	3.3		10.5				pF	(Note 2)	-
	Capacitance	5.0		12.8					(Note 2)	Figure 2

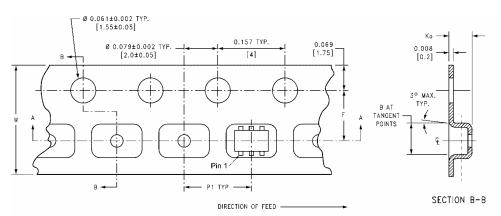

loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

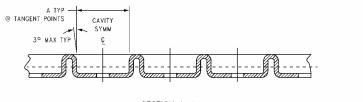
AC Loading and Waveforms


 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

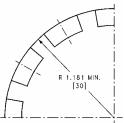
Input = AC Waveform; $t_r = t_f = 1.8$ ns PRR = 10 MHz; Duty Cycle = 50% \overline{E} Input = GND

FIGURE 2. I_{CCD} Test Circuit

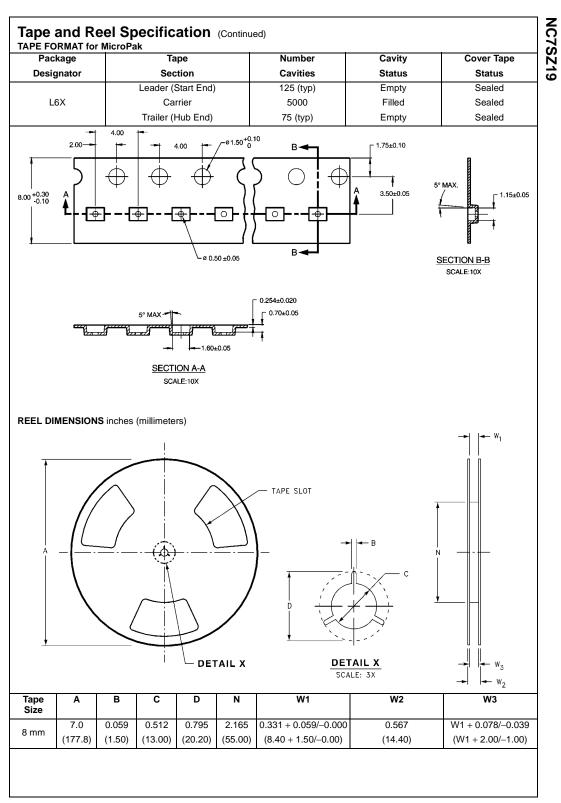

NC7SZ19

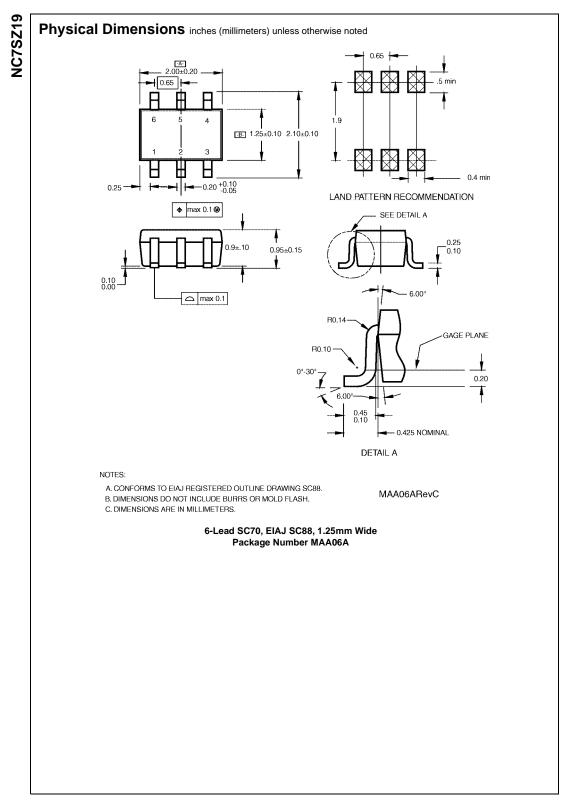


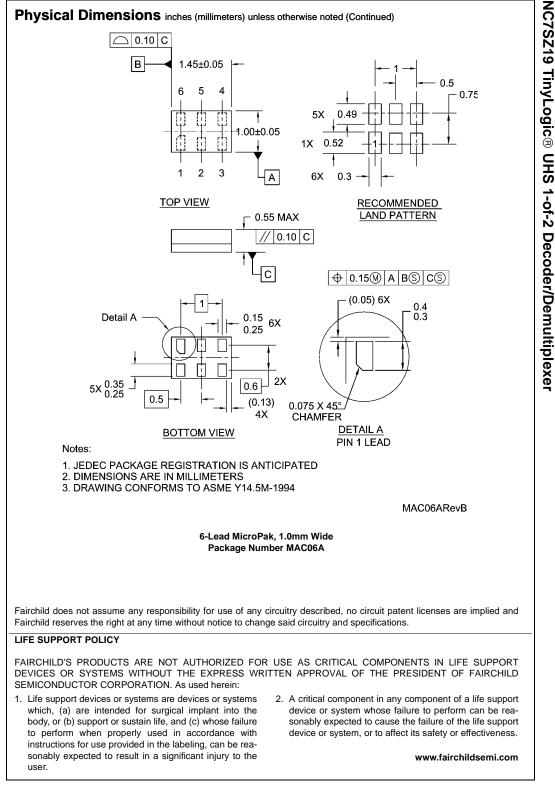
Tape and Reel Specification


TAPE FORMAT for S	6C70			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
P6X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)




SECTION A-A



BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
	0 11111	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)

